
International Journal of Theoretical Physics, Vol. 35, No. 7, 1996 

Spacetime Without Reference Frames: An 
Application to the Kinetic Theory 

T. M a t o l c s i  I and  T. G r u b e r  t 

Received January 18, 1996 

Spacetime structures defined in the language of manifolds admit an absolute 
formulation, i.e., a formulation which does not refer to observers (reference 
frames). We consider an affine structure for Galilean spacetime. As an application 
the Chapman-Enskog iteration for the solution of the Boltzmann equation is 
given in an absolute form. As a consequence, the second approximations of the 
stress tensor and the heat flux are obtained in a form independent of observers, 
which throws new light on material frame indifference. 

1. ~ T R O D U C T I O N  

General relativity is a mathematically well developed physical theory. 
In the last decade several attempts have appeared to formalize nonrelativistic 
(Galilean, Euclidean) spacetime in a similar mathematical way (Appleby 
and Kadianakis, 1983, 1986; Kadianakis, 1983, 1985, 1991; Rodrigues et  
al., 1995): spacetime is considered to be a four-dimensional manifold 
endowed with further structures involving absolute time and Euclidean 
inner product in some way. Absolute simultaneity divides spacetime into 
a continuous sudcession of instantaneous three-dimensional spaces; a 
working theory requires that these spaces be related to each other. The 
relation among the instantaneous spaces can be assured by a connection. 
In some approaches this connection forms part of the mathematical structure 
without a physical interpretation and in others it represents a gravitational 
field. Of course, we would like to have a theory which works without 
gravitation, too. 
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In usual treatments of special relativity (which corresponds to general 
relativity without gravitation) spacetime is endowed--taci t ly  or explici t ly--  
with a structure stronger than the manifold structure: the spacetime transla- 
tions are meaningful and play a fundamental role as symmetries and lead to 
the conservation of four-momentum by the Noether theorem. This means 
that special relativistic spacetime is an affine space and nonrelativistic space- 
time, too, is to be considered an affine space, as was stated already over 70 
years ago (Weyl, 1922). The affine structure establishes a relation among the 
instantaneous spaces, and thus it rules out connections from the structure. 
Moreover, the affine structure is much simpler than the manifold structure 
and admits nicer applications because its notions are closer to the ones in 
usual treatments; of course, since an affine space is a special manifold, all 
the results obtained in the manifold approach hold true in this case, too. 

The nonrelativistic spacetime model based on an affine structure is 
treated thoroughly by Matolcsi (1993). One of the greatest advantages of 
such a spacetime model is the fact that the intuitive notion of observer 
(reference frame) is ruled out; more precisely, (i) the structure ofspacetime 
does not involve observers, and (ii) the notion of observer is defined with 
the aid of the given structure in a mathematically exact way. 

This allows us to use only absolute objects in formulating physical 
theories, i.e., objects that are not related to observers. Of course (since a 
theory is justified by observations), the spacetime model must supply a rule 
for how observers deduce their relative objects from the absolute ones. 

An important example is the absolute velocity, which is the analogue 
of the well known four-velocity in relativistic physics. Physically: a material 
object has some intrinsic property which is observed by different observers 
as different relative velocities; this intrinsic property is the absolute velocity. 

We can formulate Newtonian equation, Maxwell equations, balance 
equations and constitutive relations of continuum physics, Boltzmann equa- 
tion, etc., in absolute terms; these formulations throw new light on some 
usual notions involving observers. It is well known that the approximation 
procedures for solving the Boltzmann equation yield constitutive relations 
in continuum physics which cause trouble in connection with the principle of 
material frame indifference (MUller, 1972, 1976, 1985; Wang, 1975; Speziale, 
1981; Hoover et al., 1981). Examining these approximation procedures, we 
easily find that they are strongly related to observers. 

First we will recapitulate the notions of the spacetime model based on 
an affine structure and then as an application we present an absolute version 
of the Chapman-Enskog iterative procedure for the Boltzmann equation 
resulting in an absolute form of the second approximation of the stress and 
the heat flux, which has an interesting consequence regarding the principle 
of material frame indifference. 
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2. G E N E R A L  A S P E C T S  OF  T H E  S P A C E T I M E  M O D E L  

2.1. Since we want to have a rigorous mathematical setting, we must take 
into account the physical dimensions (units of measurement) of  quantities: 
contrary to the usual treatments, distances, time periods, and masses are not 
considered to be real numbers (3 m and 3 km are distances, but 3 is not). 
An appropriate m e a s u r e  l ine (an oriented one-dimensional real vector space) 
is to be assigned to each quantity for measuring its magnitude. The product 
and quotient of uni ts - -such as m/sec '---are given by a tensor product and 
a tensor quotient, which obey the usual rules of multiplication and division 
(Matolcsi, 1993). The nth tensor power of  a measure line will be denoted 
by an exponent (n); e.g., D C2) : =  D ~) D. Thus if D and I are the measure 
lines of distances and time periods, respectively, then D/I is the measure line 
of velocities, D/I t2~ is the measure line of accelerations, D (3~ is the measure 
line of volumes, etc.; if m E D and sec E I, then m/sec 2 E D/I (2). 

The application of measure lines makes apparent the physical dimen- 
sions, which rules out "dimension analysis." 

The measure line D of distances and the measure line of  time periods 
I are sufficient to establish a nonrelativistic theory: if the Planck constant is 
taken to be the real number 1, then the measure line of masses is UD (2). This 
choice seems very useful in theoretical considerations. Nevertheless, we can 
choose the other possibility corresponding to the SI system of  units: then we 
introduce an independent measure line of  masses. In this paper we avoid the 
explicit use of the measure line of masses, so readers can chose it at their will. 

2.2. Spacetime is considered to be a four-dimensional affine space M, 
which means that there is a four-dimensional vector space M and a map, 
called subtraction, 

M • M---~ M ,  ( y , x )  ~ y - x 

having the following properties: 
(i) (y - x) + (x - z) + (z - y) = 0 for all x, y, z E M. 
(ii) M --4 M, x ,-. x - y is a bijection for all y e M. 

2.3. The basic property of  the nonrelativistic spacetime is that to every 
spacetime point x an absolute instant (time point) "r(x) can be assigned. In 
mathematical form: there exist an absolute time I (a one-dimensional affine 
space over the vector space I) and a map "r: M --~ I which is supposed to be 
a nontrivial affine map, i.e., there is a nonzero linear map x: M ~ I such 
that -r(x) - "r(y) = x" (x - y) for all spacetime points x, y. 

2.4. Every instant t (element o f / )  defines the corresponding hyperplane 
of simultaneous spacetime points 
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E, :-- {x E MI'Kx) -- t} 

The differences of  elements of  E, are in the three-dimensional vector space 

E : =  {x ~ M l ' r . x  = 0} 

which means that E, is an affine space over  E. Then we accept that the 
simultaneous spacetime points are endowed with a Euclidean structure, i.e., 
there is given the measure line D of distances and a positive-definite symmet-  
ric bilinear map 

b: E x E ---> D <-~ 

2.5. Summarizing the previous facts, we define the nonrelativistic space- 
time model as a quintuplet (M, I, "r, D, b) where: 

�9 M is a four-dimensional oriented affine space (spacetime) over the 
vector space M (spacetime vectors). 

�9 I is a one-dimensional oriented affine space (absolute time) over the 
vector space I (measure line of time durations). 

�9 x: M ---> I is an affine surjection (time evaluation) over the linear 
map "r: M --> I. 

�9 D is a one-dimensional oriented vector space (measure line of 
distances). 

�9 b: E • E --> D (2) is a positive-definite symmetric bilinear map 
(Euclidean structure), where E :=  Ker x. 

2.6. An important notion is M*, the dual of  M: the set of  covectors, 
i.e., real-valued linear maps on M. Here M* is a four-dimensional vector 
space, distinct from M. Tensors and antisymmetric tensors will be denoted 
by the usual symbols;  e.g.,  M | M is the space of  two-tensors and M* ^ 
M* is the space of  antisymmetric two-cotensors. Contractions of  cotensors 
(covectors) with tensors (vectors) will be denoted by a dot. 

Linear maps will be regarded as tensors, according to the following rule. 
If  V and U are vector spaces, then a linear map L: V --> U is considered to 
be an element of  U | V* in such a way that the contraction L .  v corresponds 
to the value of L at the vector v ~ V. 

In this way we have 'r ~ I | M*. 

2.7. E is a three-dimensional linear subspace of M whose elements are 
called spacelike vectors. According to the previous convention, the inclusion 
map i: E ---> M is an element of  M | E*; its transpose i* ~ E* | M is 
defined by k-  i . q  = ( i * . k ) .  q for all k E M*, q ~ E; in other words, i * . k  
is the restriction of  the linear form k onto E. 

We shall find it convenient to write a dot instead of b, too: q .  r : = b(q, 
r). This notation is consistent with the above one introduced for contractions 
because b allows us to identify E/D ~2) with E* (Matolcsi, 1993, 1.1.2.5). 
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It is important to keep in mind that the "inner product" of two spacetime 
vectors is not meaningful unless they are spacelike; the "inner product" is 
given by the Euclidean structure b. The dot product (contraction), in general, 
is defined between a covector (element of M*) and a vector (element of  M) 
and this dot, being defined between elements of  different vector spaces, does 
not represent an inner product. The dot between two spacelike vectors makes 
sense and corresponds to an inner product. 

As a consequence, the magnitude of a spacetime vector is not meaningful 
unless the vector is spacelike. The magnitude of q E E is I q I := ~ E D. 

It follows from the definition that the dot product between corresponding 
quantities with other physical dimensions is meaningful, too. For instance, 
if z ~ M | D and w E M/I, then z" w E D/I. Consequently, the magnitude 
of  spacelike vectors with other physical dimensions can be defined; e.g., the 
magnitude of v ~ E/I  is I v I := x/v" v E D/I. 

It will be suitable to use 

E 
N : = - -  

D 

which is the set of spacelike vectors without physical dimension. The magni- 
tude of an element of  N is a real number. 

2.8. The history o[ a masspoint in the spacetime model is described by 
a twice-differentiable world line function r: I --4 M such that "r(r(t)) = t holds 
for a l l t  ~ I. 

The absolute velocity of the masspoint is the derivative of the world 
line function: 

M ?(t) = lim r(s) - r(t) ~ __ 
s--,t s - t I 

We easily find that 'r. r = 1; thus we introduce the set of  absolute velocities, 

V ( I ) : =  w e - i - I ' r - w  = 1 

The differences of  elements in V(I) are in E/I, which means that V(I) 
is an affine space over E/I  which turns out to be the set of  relative velocities. 

Note the important fact that an absolute velocity is not a spacelike vector, 
and thus it has no magnitude. On the other hand, the relative velocities are 
spacelike vectors; their magnitude is meaningful as an element of  D/I. 

2.9. The absolute acceleration of the masspoint is the second derivative 
of the world line function. We have/:(t) ~ E/I (2), i.e., the absolute accelerations 
are spacelike vectors. 
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Accordingly, an absolute force  f i e ld  is a function f defined in M • V(1) 
having spacelike vector values (with appropriate physical dimension) in such 
a way that the absolute Newtonian equation for the world line function r of 
a particle with mass m has the form 

~: = f(r, e) 

2.10. An observer, physically, is a collection of  masspoints; mathemati- 
cally it is defined as the collection of  the velocity values of the histories of 
the masspoints i.e., as a velocity field U: M ---> V(1), which is supposed to 
be smooth. A constant velocity field is an inertial observer. 

The motion of  a masspoint with history (world line function) r relative 
to an observer U is defined (Matolcsi, 1993, 1.6.), and we find that the relative 
velocity of the masspoint with respect to the observer is ~(t) - U(r(t)). 

That is why if wl and w2 are absolute velocities, then w~ - wz is called 
the relative velocity of Wl with respect to w2. 

2.11. If V is an affine space (over the vector space V), then the differentia- 
bility of a function dO: M ---> V is defined by a formula well-known for 
functions between vector spaces; its derivative is the function DdO: M ---> V 
| M* for which 

tim dO(Y) - dO(x) - DdO(x).(y - x) = 0 
y~x ly - xl 

holds, where I. I is an arbitrary norm on M. 
If V = M, then DdO takes values in M | M*; the self-contraction (trace) 

defined for the elements of M | M* yields the divergence D. dO, which is 
a real-valued function defined on m. 

It is important that the spacelike derivative VdO := i*-DdO: M ----> V | 
E* is an absolute object (independent of  observers); on the other hand, 
the timelike derivative cannot be defined in an absolute manner: timelike 
derivatives exist only with respect to observers. More precisely, if u is a 
velocity field (in particular, an observer), then D,,dO := u .  DdO is the u-t imelike 
derivative (which corresponds to the usual "substantial time derivative"). 

If f: M • V(I) ---> V is a differentiable function, then its first partial 
derivative Dlf :  M X V(I) ---> V | M* is defined as the derivative of  the 
function M ---> V, x ~, f ( x ,  w) for fixed w e V(1). The second partial derivative 
Dj2  M • V(I) ---> V | (E/I)* is defined similarly, according to the sense. 

3. A B S O L U T E  F O R M U L A T I O N  OF  T H E  K I N E T I C  T H E O R Y  

We give only a short and concise survey; the absolute formulation is a 
quite easy transcription of the usual one. 
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3.1. The Boltzmann Equation 

Let us consider a gas consisting of molecules with mass m under the 
action of a force field. The spacetime region in which the gas molecules 
exist is supposed to be a connected open subset G of M. We assume that the 
force field has the special form 

(x, w) ---> m i * . F ( x ) . w ,  x E G, w ~ V(1) 

where mF: G ---> M* /', M* is a smooth map. This covers the cases when 
the force field has a potential or does not depend on velocity (Matolcsi, 1993, 
1.2.4.3 and 1.9.4.6.) which is usually considered in kinetic theory. 

The (molecular) distribution function is a differentiable map~  G • V(1) 
I~ ~6), subject to the integrability condition 

fv f(x,w) axaw=l 
n E  t I) 

for all t ~ I such that G fq E, is nonvoid; here and in the sequel dx and dw 
denote the integration by the D (3)- and DC3)/i~3)-valued canonical translation- 
invariant measures of Et and V(I), respectively (Matolcsi, 1986). 

The absolute Maxwell-Boltzmann equation reads (Matolcsi, 1986) 

(Dif(x, w) + Dzf(x, w ) ' F ( x ) ) ' w  = (Cf)(x, w), (x, w) ~ G • V(l) 

[i* can be omitted from the contraction of Dzf(x, w) and i*- F(x) .  w.] 
The collision integral Cf involves a scattering function and a scattering 

cross section detailed in the next section. 

3.2. Binary Collisions and Scattering 

We consider the elastic collision of two molecules with equal masses. 
Let the absolute velocity values of the molecules before and after collision 
be denoted by wl, w2 and wi ~, w~-, respectively. Of course, we exclude that 
the absolute velocity values of the molecules are equal (then no collision 
occurs); thus we shall consider the set 

V(I, 1) := {(wb wz) ~ V(1) X V(l)lwt 4: w2} 

Furthermore, we shall also use the notation 

S (1 ) :=  {n ~ NI Inl = 1} 

Elastic collisions are characterized by: 
(i) Conservation of absolute momentum, which results in 

wt + w 2 = w ~ + w ~  
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(ii) Conservation of  wo-kinetic energy, which results in 

IWl -- WO 12 -I- IW2 -- W012 ---- Iw~ -- Wo 12 + Iw~ -- WO 12 

where 

w l + w 2  wi ~ + w ~  
W 0 : :  - -  - -  

2 2 

is the velocity value of  the center of  mass. 
It is worth mentioning that these relations imply the conservation of c- 

kinetic energy for all c ~ V(I). 
From the above equalities we infer that there is an element n ~ S(1), 

called the scattering direction, such that 

Iw2 - wtl Iw2 - wtl 
w~ = w0 n, w~ = w 0 + n 

2 2 

We take w~- and w~ as functions of  wl, w2, and n given by the previous 
formulas, and we consider from now on this scattering function 

(wi% w~-): V(l, l) • S(1) -> V(l, 1) 

Recall that the scattering cross section is a map (r that assigns to every 
nonzero relative velocity value v (an element of  E/I) a D~2)-valued measure 
(r~ on the Borel subsets of  S(I) (Matolcsi, 1986). Now we assume that for 
all Borel subsets B of  S(I) the map 

V(I, 1) ---> D (2), (wl, w2) ~ cr~2-wa(B) 

is locally integrable by the product measure on V(I, 1) and we define the 
D(8)/I(3)-valued measure E on the Borel subsets of  V(I, 1) X S(I) by 

~. (E , •  IE (r.2-.,(B) dw, dw2 
2 I 

The bijections 

T: V(I, 1) • S(l)  ----> V(l, 1) x S(1) 

( w2-w,) 
(wl, w2, n) .-. w~(wl, w2, n), W~(Wh W2, n), Iw2 wl I 

and 

J: V(I, 1) • S(l)  ----> V(1, 1) • S(I), 

have the properties 

(wl, w~,n) ~ (w2, w,,n) 
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T -l = T, j - i  = j 

T is interpreted to describe inverse scattering: if the incoming velocities 
are w~ and w2, the direction of  their relative velocity is (w2 - wt)/Iw2 - 
w~l and if the outcoming velocities are w~- and w~, then in the inverse 
scattering the incoming velocities are w ~ and w~, and the outcoming velocities 
are wt and w2 with scattering direction (w2 - wOII w2 - wtl. 

J is interpreted to describe the interchanging of the two molecules 
in collision. 

Now we require that the scattering cross section be invariant under T 
and J; more precisely, we require 

oT -t = ~ o J - t  = 

or in other words, for every function 13 defined on V(1, 1) • S(I) and taking 
values in a finite-dimensional vector space V and being integrable with 
respect to E, we have 

Iv (13 ~ T) dY-' = Iv( (IB ~ J) dY-' = Iv( 13dY-, 
( l , I )x$( I )  l , l )xS( l )  l , I )xS(I)  

3.3. Balance Equations 

If N is the number of molecules and m is the mass of each molecule, 
we introduce the mass density 

p ( x ) : = m N (  f(x, w) dw (x ~ G) 
Jvt I) 

and we suppose it is nowhere zero. 
If V is a finite-dimensional vector space, then for a function Z: G • 

V(1) --~ V we put 

mN I,, f(x,  w)Z(x, w) dw 

t "  

C(Z): G ---) V, x ~ [ (Cf)(x, w)Z(x, w) dw 
Jvc i) 

provided the integrals exist. 
If we use the symbol 

W: G •  V(I)---~ V(I), (x,w) ,-. w 

and we suppose that the usual regularity conditions hold [the integrals in 
question exist, the order of integration and differentiation can be interchanged, 
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f (x ,  �9 ) tends to zero at infinity in a sufficient order], we get the transport 
equation for a differentiable Z: 

D . ( p ( Z |  I4")) - p(DLZ" W) - p (D2Z 'F"  W) = C(Z) 

where D.  in the first term denotes the divergence of  the corresponding 
function and, of  course, 

(Z | W)(x, w) = Z(x, w) | w 
(DIZ" W)(x, w) = DIZ(x, w ) ' w  

(D2Z'F"  W)(x, w) = D2Z(x, w)"F(x)"w 

A map S: V(I) --> V is called summational invariant with respect to the 
scattering function (w~, w~-) if 

S(wO + S(w2) = S(w~((wl, wz, n)) + S(w~(wl, w2, n)) 

for all (wl, w2, n) ~ V(I, 1) • S(I). 
The Boltzmann-Gronwall  theorem (Truesdell and Muncaster, 1980, 

VI.(ii)) in our formulation asserts that a measurable S is a summational 
invariant if and only if there are an affine map L: V(I) --> V, a c ~ II(1), 
and a k ~ V | such that S(w) = L(w) + K I w - c 12 for all w ~ V(I). 

With the aid of the invariance properties of  the scattering cross section 
we can prove as usual that if Z: G • V(1) ---> V is a function such that 
Z(x, �9 ) is summational invariant for all x E G, then 

C(Z) = 0. 

Introducing the absolute gross velocity f ieM 

u :=  (W): G ~ V(1) 

and the random velocity vr: G x V(I) ---> E/I, 

Vr(X , W) : =  W --  /,~(X), (X, W) E G X V ( l )  

defining the usual quantities 

P "= p(Vr | Vr), e :=- l(IVr 12), q := Ip(IVr 12Vr) 

and in the transport equation substituting for Z the quantities m [as a constant 
function on G • V(I)], mW, and m lVrl 2/2, we obtain the absolute balance 
equations 

D . (pu) = 0 

D . ( p u |  + P )  = p i * . F - u  
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or in other forms 

D . (peu  + q) = - P :  Vu 

Dup = - p V ' u  

pDuu = - V ' P  + p i * ' F ' u  

pD.e = - V - q  - P : VU 

where Du is the u-timelike derivation and the colon denotes a double 
contraction. 

4. T H E  A B S O L U T E  I T E R A T I V E  P R O C E D U R E  

4.1. In this section N and No denote the set of positive integer numbers 
and the set of nonnegative integers, respectively. 

Now we suppose that (1) the function R := (p, u, e, F)  defined on G 
is smooth, and (2) the distribution function can be given by a series f = 
~ = o  f .  such that: 

(i) Cfo = O. 
(ii) For all n E N (and x E G), 

fv f.(x, w) dw = 0 
(I) 

fv f~(x, w)w dw = 0 
(I) 

Iv f.(x, w)v,(x, w) dw = 0 
(l) 

(iii) If (for x ~ G) 

P.(x) "= mN f f~(x, W)Vr(X, W) | Vr(X, W) dw 
Jr< l) 

mN f f.(x, w) lvr(x, w) t2vr(x, w) dw 
q.(x) := T Jr(, 

then 

p = P,,, q = q. 
n =0 n =0 
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i.e., the order of integration and summation can be interchanged; 
(iv) For all n E No, the function (x, w) ~ f.(x, w) depends on x through 

the spacelike derivatives of R in such a way that the order of the derivatives 
does not exceed n: there are smooth functions qo. such that 

f,,(x, w) = q~.(R(x), VR(x) . . . . .  V"R(x), w) 

4.2. Let us introduce the notations 

Top :=  - p V - u ,  T.p :=  0 

1 i* T.u 1 Tou := - -  V 'P0 + . F . u ,  := - -  V . P .  
P P 

ToF := D .F ,  T . F  := 0 

fo rn  E N a n d  

1 
T.e := - -  (V.q .  + P,, : Vu) 

P 

for n E No, and let us collect them for defining 7". R for n ~ No. [Observe 
that 7". corresponds to the "time derivation" D./Dt in Chapman (1970).] 

~p. is a function o fn  + 1 variables; DkqO. denotes its kth partial derivative. 
For the sake of simplicity we set 

R["]: = (R, VR . . . . .  V"R), n ~ No 

and, supposing that the series in question converges, we define for m, n ~ No 

o a  

Amf.(x, w ) " =  ~ Dkq~.(R["l(x), w)" ( ( V k ( V r  " VR + TzR))(x)) 
k=0  

AFf~(x, w) :=  D,,+lqo.(Rt"l(x), w)" F(x)" w 

Using the relation DwR = (w - u ) . V R  + D,,R, we easily find that 

Dif.(x, w ) ' w  = ~ A,.f.(x, w) 
m=O 

Dz~,,(x, w).  F ( x ) . w  = AFf,,(x, w) 

4.3. Supposing that the order of infinite summation and differentiation 
can be interchanged, we derive from the Maxwell-Boltzmann equation 
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) ~=o amfn + arf~ = ~ ~(f~' f'~) 
= m = O  n=O m=l  

where 

~(f. ,  fm)(X, w) 

"=IvfslW'-w'(f (x, w 
( I )  ( I )  

- f,,(x, w)f,n(x, w')) dcr(n)w,-w dw' 

provided the integral exists; the summation for m on the right-hand side of 
the previous equality begins from 1 because ~(fo, f0) = Cfo = O. 

4.4. Supposing that the series converge absolutely, we can compute the 
double sums by Cauchy's method, i.e., 

~=o Aifk + AFf, = E ~(fii, fk) 
= i n n = 0  i+k=n+l  

Hence, if we require that the functionsf, satisfy Enskog's iterative system 

a.,fk + apfn = ~ ~(fi, f~), n E No 
i+k=n i+k=n+l  

then (with the assumptions made above) E~~ f~ is a solution of the Boitz- 
mann equation. 

5. A P P R O X I M A T I O N S  FOR THE S T R E S S  T E N S O R  A N D  THE 
HEAT FLOW 

To determine Pn and qn from Enskog's iterative system, we can follow 
a way similar to the usual one (Chapman, 1970); hence the details are omitted. 
Introducing the flotations 

2 p 
O : = ~ m e ,  p : = - - O m  

A : =  
Vu + (Vu)* 

2 
(the symmetric part of Vu) 

- -  1 
A := A - =(Tr A)I 

.5  
(the traceless part of A) 

we obtain 
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P0 = P l ,  qo = 0 ,  

Pl = - 2 ~ ,  ql = - h V O  

where Ix and h are scalar-valued functions defined on G and 1 is the identity 
tensor (idN). 

If T is an arbitrary spacelike tensor, then T will denote the traceless 
part of the symmetric part of  T; we have 

P2 = 13t(Tr A)A + 132V(i*'F.u - (l/p)Vp) - V u . V u  - 2 A .V u  + 13aVVO 

+ 134Vp @ VO + 13570 @ VO + 136A'A + 137i*'(A'F) 

q2 = at(Tr A)VO + az(3V(OV'u) - 2VO'Vu)  + ot3Vp'A 

+ a4V" A + asVO" A + c~6i*" (VO" F) 

where [31 . . . . .  [37 and al  . . . . .  or6 are scalar-valued functions defined on G. 

6. DISCUSSION 

6.1. We have given an absolute version of the Chapman-Enskog iterative 
procedure. As a result, we have obtained absolute forms of the first and 
second approximations for the constitutive functions. Our zeroth and first 
approximations are essentially the usual ones. The second approximations 
contain a term (the last one) missing from the usual formulas. If the body 
force does not depend on velocity [ m F  takes values in M* A (I*'-r)],  then 
its contractions with spacelike vectors are zero; thus in the usually considered 
case the last terms vanish. Apart from these last terms, the form of  the second 
approximations is formally the usual one; however, our formulas concern 
absolute quantities only, including absolute velocity. 

6.2. Let us relate our absolute quantities to an observer U in order to 
obtain a comparison with the usual formulas. 

Now 

v : = u - U  

is the relative gross velocity field considered usually. To get the constitutive 
functions relative to the observer U, we have to use the relative velocity v, 
i.e., to replace u with v + U (and flu with ffv + flU) in our absolute 
constitutive functions. 

If the observer is inertial, i.e., there is a c ~ V(I) such that U = c, then 
VU = 0, Vu = Vv, and we get at once the formulas of Chapman (1970) in 
which the observer does not appear explicitly. 

If the observer is rigid but noninertial, then there is a nonzero map l-l: 
I ---> E A E/I such that 
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U(x + r) - U(x) = f~(T(x)),r, x E M, r ~ E 

(Matolcsi, 1993, 1.4.2.4.). In other words 

VU(x) = ~(-r(x)) 

i.e., VU(x) is antisymmetric for all x ~ M; this is the angular velocity of the 
observer, denoted usually by W. Since VU is antisymmetric, the symmetric 
parts of Vu and Vv coincide. Consequently, in our absolute formulas the 
symmetric part of Vu can be replaced with the symmetric part of Vv; on the 
other hand, Vu is to be replaced with Vv + VU, so together with Vv the 
angular velocity of  the observer will be present in the relative constitutive 
functions; we find at once that these relative constitutive functions contain 
the well-known inertial terms. 

6.3. The principle of material frame indifference has been debated for 
more than three decades. The validity of this principle was questioned by 
several authors (Mtiller, 1972, 1976, 1985; Hoover et al., 1981) according 
to whom material frame indifference and the kinetic theory of gases are 
incompatible. Other authors claimed that some arguments against frame indif- 
ference were not convincing (Wang, 1975; Speziale, 1981) and introducing 
some supplementary terms (Murdoch, 1983) or defining a new sort of time 
derivative (Boukary and Lebon, 1985), they tried to demonstrate that frame 
indifference is not contradicted by kinetic theory. Their arguments, however, 
are not convincing, and it is stated in recent publications (MUller and Ruggeri, 
1993; Jou et al., 1993) that material frame indifference is violated by kinetic 
theory and holds only approximatively. 

Let us recall the main concepts of material frame indifference. 
The principle of material frame-indifference states that "stress and heat 

flux are related to the fields of density, velocity and temperature in a manner 
dependent solely on the material" (MUller, 1972), and "the properties which 
characterize any given material should be independent of observer" (Mur- 
doch, 1983). 

A mathematical formulation was given to the principle (Noll, 1973), 
whose clearest composition reads as follows (MUller, 1985): 

. . . the constitutive functions . . .  are the same ones for observers in inertial 
frames and in non-inertial ones. . .  The two observers see different values of the 
independent variables in the constitutive equations, namely 

OVr aT OV*r aT 
p, ,,o r, axe' ~x~ P" ~*' r, ~x~' ox~" 

respectively. Similarly they see different values of the dependent variables stress and 
heat flux, namely tq, ql and t,j*, q~*. It would be conceivable that the two observers 
also see a different relation between the different independent variables, so their 
respective constitutive equations would have the forms 
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Ov, t~T) 

. . .wi th  functions i 0 . . .  and ~ . . .  respectively. However, the principle of  material 
frame-indifference postulates that the constitutive functions are the same ones for both 
observers. That is to say that the principle forces us to drop the stars from the 
constitutive functions ~ . . . .  

6.4. Now let us suppose that a student says: "I do not see that the 
principle is well expressed by this mathematical formulation; on the contrary, 
I think that velocity and gradients depend so strongly on observers that the 
constitutive functions, too, must depend on observers in such a way that the 
dependence in velocity and gradients and the dependence in the constitutive 
functions compensate each other expressing the fact that the properties of a 
given material are independent of observers." 

Can we refute this statement? Can the student prove it? The refutation 
or the proof seems impossible in the usual framework. However, if we rule 
out observers from the fundamentals of the theory, then the mathematical 
formulation of the principle will be trivial: 

The properties of a given material are described by absolute objects; 
in other words, constitutive functions are absolute. 

Then having found absolute constitutive functions and using the rule 
for how observers introduce their own relative objects, we can check whether 
the student is right or not. 

6.5. In our description all the constitutive parameters--density, velocity, 
temperature, and their gradients--as well as the constitutive functions are 
absolute quantities, i.e., quantities not referring to observers (the clue is the 
absolute velocity). Since observers are not present at all in our formulas, 
"stress and heat flux are related to the fields of density, velocity and tempera- 
ture in a manner dependent solely on the material," i.e., independently of 
observer: the principle of  material frame indifference is satisfied 
automatically. 

The absolute forms can be translated into the language of observers, 
i.e., constitutive functions relative to observers can be derived from the 
absolute ones as done in Section 6.2. and exactly the well-known inertial 
terms appear in the constitutive functions relative to a rotating observer. 

6.6. According to these results we see that: 
(i) The kinetic theory does not contradict the principle of  material 

frame indifference. 
(ii) The kinetic theory contradicts the usual mathematical formulation 

of the principle. 



Spacetime Without Reference Frames 1539 

(iii) The usual mathematical formulation does not express correctly the 
principle of material frame indifference: the form of the constitutive functions 
relative to observers does depend on observers. 

R E F E R E N C E S  

Appleby, E G., and Kadianakis, N. (1983). Archive for Rational Mechanics and Analysis, 84, 171. 
Appleby, E G., and Kadianakis, N. (1986). Archive for Rational Mechanics and Analysis, 95, I. 
Boukary, M., and Lebon, G. (1985). Physics Letters, 107A, 295. 
Chapman, C. (1970). The Mathematical Theory of Non-Uniform Gases, Cambridge University 

Press, Cambridge. 
Hoover, W. G., Moran, B., More, R. M., and Ladd, A. J. C. ( 1981 ). Physical Review A, 24, 2109. 
Jou, D., Casas-Vasquez, J., and Lebon, G. 0993). Extended Irreversible Thermodynamics, 

Springer, Berlin. 
Kadianakis, N. (1983). Nuovo Cimento B, 95, 82. 
Kadianakis, N. (1985). Nuovo Cimento A, 89, 204. 
Kadianakis, N. (1991). Reports in Mathematical Physics, 30, 21. 
Matolcsi, T. (1986). Archive for Rational Mechanics and Analysis, 91, 99. 
Matolcsi, T. (1993). Spacetime withot, t Reference Frames, Akadrmiai Kiadr, Budapest. 
Murdoch, A. I. (1983). Archive for Rational Mechanics and Analysis, 83, 185. 
MUller, I. (1972). Archive for Rational Mechanics and Analysis, 45, 241. 
MUller, I. (1976). Acta Mechanica, 24, 177. 
MUller, I. (1985). Thermodynamics, Pitmann, London. 
MUller, I., and Ruggeri, T. (1993). Extended Thermodynamics, Springer, New York. 
Noll, W. (1973). Archive for Rational Mechanics and Analysis, 52, 62. 
Rodrigues, W. A., Jr., de Souza, Q. A. G., and Bozhkov, Y. (1995). Foundations of  Physics, 

25, 871. 
Speziale, G. ( 1981 ). International Journal of Engineering Sciences, 19, 63. 
Truesdell, C., and Muncaster, R. G. (1980). Fundamentals of Maxwell's Kinetic Theory of  a 

Simple Monatomic Gas, Academic Press, New York. 
Wang, C. C. (1975). Archive for Rational Mechanics and Analysis, 58, 381. 
Weyl, H. (1922). Space-lime-Matter, Dover, New York. 


